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Abstract

Space exploration rovers are tasked with navigating difficult, featureless and often unknown

terrain. Existing rover systems rely on regular human input, orbital reconnaissance, constant

lighting and feature rich patches of terrain for navigation. These limitations restrict the operational

scope of a space mission, which makes reliable autonomous navigation and mapping an attractive

prospect.

This thesis proposes a laser based navigation solution which uses autonomously deployable artificial

landmarks to introduce features into the environment. A decoupled Simultaneous Localization and

Mapping (SLAM) system with a scan matching front-end and a graph optimisation back-end is

implemented using a laser scanner. The SLAM system is facilitated by a proposed method which

uses indistinguishable environment modifiers to reduce misalignment errors and improve data

association in ambiguous terrain.

Our solution is tested on a robot system with real world data. Experiments in approximated

featureless environments show promising results across a variety of navigation tasks.
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CHAPTER 1

Introduction

"Our universe is a sorry little affair unless it
has in it something for every age to
investigate."

–Seneca

Privatization of the space industry (Solomon, 2011), reusable launch vehicles (Young, 2015)

and advances in robotics leave little doubt that space exploration is gaining mainstream focus. Semi

and fully autonomous robotic systems are an essential part of the international space exploration

effort, with four planned lunar rover missions in 2017 (2 by Google Lunar XPRIZE, Chandrayan-2

by India and SELENE-2 by Japan), and several Martian rover missions planned by the European

Space Agency (ESA), the National Aeronautics and Space Administration (NASA), the Canadian

Space Agency (CSA) and China National Space Administration (CNSA) before 2020.

Although robots enjoy the obvious edge of cost-effectiveness, accessibility and overall practi-

cality, they lack the operational flexibility and native intelligence of humans. Compounding this are

factors like slow navigation due to transmission delay, restricted communication windows, limited

bandwidth and constraints due to a small perception range; thus making autonomous navigation

pertinent for bolstering space exploration missions.

Plans for a research facility on the Moon, or a lunar base are in the works, and the interna-

tional space community hopes to have it ready by 2050. Akin to construction activity on Earth,

operations like site selection, site preparation and base construction will require detailed 3D maps.

In contrast to exploratory tasks on Mars, lunar rovers would perform extended operations in local

work site environments and would be required to visit the same location multiple times. Ultimately,

creating globally consistent, accurate 3D maps in the absence of infrastructure based positioning

systems (like GNSS) will be one of the first steps in the lunar base undertaking. As explained in

the subsequent sections, mapping an unknown environment necessitates accurate localization of

rover poses.

1



CHAPTER 1. INTRODUCTION 2

The focus of this work is to improve autonomous capabilities, specifically navigation, of in-

dependent rovers in planetary environments.

1.1 The Martian Rovers/State of the Art

NASA’s twin Mars Exploration Rovers (MER) Spirit and Opportunity (operational since early

2004), and the 900kg Mars Science Laboratory (MSL) or Curiosity rover (operational since Au-

gust 2012), have logged almost 64kms between them, providing a benchmark for state of the art

exploration on Mars. While neither of them is fully-autonomous, they do implement and make

use of localization techniques in the form of ego-motion or Visual Odometry (VO) (Olson et al.,

2003)(Maimone et al., 2007) and Wheel Odometry (WO), via a system called Autonav. While VO

and WO result in relative localization of the rovers (dead-reckoning), the global localization has

to be done manually by the control centre using maps generated by orbiter reconnaissance. The

ExoMars rover, part of the first flagship mission of the Aurora programme due to launch in 2020,

initiated by ESA also features similar sensors and navigation techniques as Curiosity. In essence

the extent of autonomous driving in the rovers is navigating between manually declared waypoints,

while localizing itself on an a-priori map, keeping drifts in position estimates to a minimum (eg.

10% during a 100m drive on the MER (Maimone et al., 2007)).

The rovers use VO along with the on-board Inertial Measurement Unit (IMU) to compute the

translation and rotation between two poses by tracking movement of ground features like rocks

using stereo cameras. WO helps calculate distance travelled by rover using encoders on wheels, and

Sun sensors provide absolute orientation. However, the localization accuracy depends highly on

the available features and the terrain type. While VO fails when there are few features to track, WO

becomes unreliable when the rover traverses non-cohesive surfaces like sand which causes slippage.

The problem compounds when the rover has to travel through a sandy terrain with no rocks on the

surface, as both VO and WO then become unreliable. To counter the above limitations, NASA uses

approaches like the D* algorithm (Stentz, 1995) for long-range path planning which accounts for

localization errors by adding uniform margins to obstacles. Other approaches like path planning to

ensure superior localization, and minimize entropy, called active localization are proposed (Inoue

et al., 2016). Some other proposed methods mediate between localization accuracy and path cost

using particle filters (Correa and Soto, 2010) or planning in belief states (Prentice and Roy, 2010).

However, the underlying problem persists, which necessitates regular human intervention to ensure

the rover is on the right path.

We will use the Martian scenario as a motivation for this thesis, although the design decisions made

will be applicable for general planetary rover operations.
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(a) Sizes of Soujourner, Opportunity and Curiosity

(b) Wheel sizes of Martian rovers (c) Distance driven by rovers on Mars and
Moon

Figure 1.1: Planetary Rovers (Photograph courtesy of NASA/JPL)

1.2 Robotic Mapping and Navigation

Effective navigation in diverse and uncharted environments is a key concern in robotic explo-

ration. Navigation in unknown environments depends on robust mapping and localization by the

robot. Mapping is the problem of assimilating perceptual information gathered with sensors into a

representation and localization is estimating the sensors’ pose within that representation. Since

these two are co-dependent, the problem of Simultaneous Localization and Mapping (SLAM)

or Concurrent Mapping and Localization (CML) deals with the task of concurrently solving the

mapping problem and the induced localization problem.

The problem of SLAM in 3D environments or 3D SLAM is tackled by a variety of approaches

which are tailored for application compliance and available resources. Methods which can be

classified by their map parametrization like spatially located landmarks (using Extended Kalman

Filters (Weingarten and Siegwart, 2005)), 3D occupancy grid maps (Endres et al., 2014) or raw

range data (Nuchter et al., 2007)(Alismail et al., 2014) aim to solve the 3D SLAM problem. For

reasons discussed later, we will concern ourselves with the third approach.



CHAPTER 1. INTRODUCTION 4

1.3 Motivation

To reiterate, below are some navigational limitations of the current state-of-the -art deployed

semi-autonomous robotic systems

• Scarcity of natural features in environment.

• Only dead reckoning and some active localization implemented. No system for mapping in

place.

• Inability to navigate in terrain not remotely mapped before or in structures not mappable by

observations from telescopes or orbital satellites (caves, the dark side of the moon, etc.).

• Error prone stereo ego-motion due to aforementioned lack of features and unreliable wheel

odometry due to non-cohesive and diverse nature of terrain.

• Daytime only operation since the primary sensors are stereo camera systems.

• Semi autonomous navigation is slow due to limits on communication with Earth (usually

only once per day).

Most SLAM methods in Section 1.2 depend on an abundant availability of local points of

interest which serve to make environments more uniquely representable, and as a consequence,

aid map building and localization. Traditionally, SLAM algorithms have been developed for

applications in urban environments which have no dearth of local interest points or landmarks.

However, as discussed above, robotic navigation on planetary surfaces does not typically enjoy

such settings and can be comparable to navigation in a featureless environment like a desert, as can

be seen in Figure 1.2.

In contrast to NASA’s Autonav, our system operates with no knowledge of the terrain and works

to build a map of the environment as it navigates in it. We also use a 3D Light Detection and

Ranging device (LIDAR) as our primary sensor instead of the stereo camera setup. A laser scanner

overcomes the constraint of daytime navigation while providing high frequency three dimensional

range data which can be used to build dense environment representations in the form of detailed

surface maps.

In addition to addressing the navigation problems due to scarce features, this thesis aims to

overcome limitations of a rover navigating in areas (caves, for example) which has not or can not

be mapped in advance by methods like orbital reconnaissance.
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(a) Lunar surface - Apollo 15 mission (b) Copernicus crater on the moon - Apollo 15

(c) Bonneville crater - Spirit

(d) Greeley Haven - Opportunity

Figure 1.2: Pictures of Lunar and Martian surface by NASA sources. There is a noticeable lack of
usable features for autonomous robotic navigation common on both bodies.
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1.4 Goal

Within the context of robotic space exploration, the nondescript and barren nature of the

surroundings where the rover operates motivates the primary focus of this thesis. This work aims

to investigate the effectiveness of environment modifiers (or artificial landmarks) in reducing the

ambiguity of the scene. We introduce local interest points or features which are used for better

localization, easier map creation and to mitigate data association or correspondence errors.

1.5 Thesis Outline

The rest of this thesis is structured as follows

• Chapter 2 provides a comprehensive review of existing literature on SLAM topics pertaining

to this thesis. This includes topics on localization and mapping of robotic systems, raw scan

matching methods and global map refinement methods. It also gives an overview of the

available works on using environment modifiers to facilitate localization and/or mapping.

• Chapter 3 describes the framework of the system this thesis was carried out in. This includes

the hardware like the sensors and the robot used; and the in-house software framework used

to develop working components and extensions on the robot system.

• Chapter 4 details the landmark detector and the decoupled SLAM system developed as part

of this thesis. It also outlines how the detected landmarks can be used to enhance our SLAM

system.

• Chapter 5 describes experiments set-up and the results obtained. It shows the results for

different test scenarios of the robot and the SLAM system in outdoor environments.

• Chapter 6 summarizes the work, acknowledges limitations and proposes directions for future

work that could overcome those limitations.



CHAPTER 2

Literature Review

This chapter provides an overview of the approaches used in our system and the prevalent

techniques used in literature. Section 2.1 introduces navigation and mapping for mobile robot

systems and traces their origins in literature. It then attempts to give an overview of the SLAM

systems in use. Section 2.2 presents a survey of the state-of-the-art in robotic navigation and

mapping in 3D environments and Section 2.3 discusses literature related to artificial landmark

aided localization.

2.1 Mobile Robot Navigation

Mobility in robots gives them access to many new operational capabilities and opens up new

areas of investigation like navigation and locomotion. In structured and static environments like

planetary surfaces, robot perception allows for scene map generation, which can be used for local-

ization and motion planning. Perception is achieved using extereoceptive or external sensors which

measure the external state of the robots, and proprioceptive or internal sensors, which measure the

internal state like odometry (shaft encoders), orientation (inertial measurement units), heading (com-

pass, inclinometer) and absolute global position (GPS/GLONASS receiver). The external sensors

are usually laser, sound or vision based. Laser systems, like sonar (sound based) are accurate active

sensors which most commonly operate on a time-of-flight principle, where the time taken by a laser

or sound pulse to reflect off the environment and be detected by the sensor is used to measure dis-

tances. Sonar however lacks appearance data and can be used only in environments with a medium

(like water or air), unlike laser systems which can be used in vacuum. Vision based systems are

passive, with high resolutions and long range. They estimate depth information, feature location and

3D formations through stereo camera set-ups or through Structure from Motion (Jebara et al., 1999).

The sensor systems discussed above are all plagued by uncertainty and perceptual noise. To

accommodate this, algorithms employ probabilistic models of the robot, its environment and the

sensors. As a result, almost all state-of-the-art robotic mapping algorithms today are built on

probabilistic mathematical foundations (Thrun, 2002). Moreover, they’re versions of the Bayes

filter model, which is essentially a recursive method to estimate a robot’s pose from the sensor

7
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and motion model. A classification of some of the most popular algorithms is shown in Figure 2.1

(adapted from Garcia et al. (2007)). The yellow double ellipses indicate the basis of classification,

the bold text shows the classifying label, the blue rectangles represent a class of methods and the

green circles show the methods.

Figure 2.1: A classification of some popular methods used for localization and mapping

Mapping using Kalman Filter (KF) (Gamini Dissanayake et al., 2001) assumes that the uncer-

tainty is multivariate Gaussian, and that both perception and motion model is linear with Gaussian

noise. There are two main variations of KF: Extended Kalman Filter (EKF) (Leonard and Newman,

2003) which accommodates environment non linearities by approximating the robot model using

linear functions; and Information and Extended Information Filtering (IF and EIF) (Thrun et al.,

2003), which is realized by propagating the inverse of the state error covariance matrix. The

Unscented Kalman Filter (Wan and van der Merwe, 2002) addresses the linearity assumptions in

KF and approximation issues in EKF. The major drawback of Kalman filters is its assumption of

independent unimodal Gaussian noise, which restricts their scalability with increasing landmarks

and data association in longer paths.

Particle Filters or sequential Monte-Carlo method approximate the belief distribution of a pose

by a set of particles not constrained to a grid. They can be applied for global localization or for

SLAM (FastSLAM (Montemerlo et al., 2003)). This approach can be tuned to scale linearly with

increasing map features, but is sensitive to the "particle depletion problem" (Van Der Merwe et al.,

2001) which loses particles in a local loop. Moreover, the performance of particle filters depends

on the number of particles.

Occupancy Grid (Thrun, 2001) methods generate probabilistic maps when the robot’s poses
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are known. The grid represents pose belief as a probability distribution over all possible robot

poses. It is therefore multimodal and good for global localization, but assumes independent noise

and cannot handle pose uncertainty.

2.2 3D SLAM

Many approaches in literature use passive cameras for 3D SLAM in unstructured environments.

Using a stereo camera system, Konolige and Agrawal (2007) used frame-to-frame VO and bundle

adjustment for loop closure and demonstrated good alignment results. Relative bundle adjustment

was used in a system called Relative SLAM (RSLAM) by Mei et al. (2011) showing localization

over an unprecedented 142 km of travel. However, a small field of view, reliance on external lighting

and restrictive power requirements for sufficient illumination (Solomon et al., 2014) make cameras

unsuitable for autonomous navigation and large scale mapping under a varying illumination profile

of a planetary surface. Illuminated sensors with a large field of view, such as laser scanners, are a

better alternative.

Laser scanners output point cloud data in multiple scans. Aligning data from consecutive scans

refers to finding homogeneous relation between them and tracking the position of the scanner

through the environment. Current literature for aligning point cloud data offers two approaches:

exploiting sparse geometric features and operations on dense point clouds.

In the sparse approach, geometrically distinct interest points are extracted from each scan and

tracked. These interest points can be regions of high curvature (Bakambu et al., 2006) or peaks in

the terrain (Carle et al., 2010; Tong et al., 2012). This method works with a reduced representation

of the scan and is computationally efficient. However, it requires construction of feature descriptors

for each point which can be detected across multiple scans. Many geometric descriptors in literature

have been introduced, including spin images (Johnson, 1997), point fingerprints (Sun et al., 2003)

and local shapes (Taati et al., 2007).

In dense scan matching or registration methods, consecutive scans are aligned by the sensor

of a moving robot to estimate its trajectory and create a consistent map. Besl and McKay in 1992

(Besl and McKay, 1992) proposed a method to register and align 3D shapes called the Iterative

Closest Point (ICP) and proved its convergence. Lu and Milios (1997) used maximum likelihood

to build maps from raw 2D data with unknown correspondences. ICP looks for closest point

pairs (using Euclidean, Mahalanobis or other heuristic) in two consecutive scans and estimates the

3D rotational and translational transformation by minimizing a cost function (Figure 2.2). Scan

matching isn’t suited for global localization since it’s essentially a tracking method and requires

the ability to model multimodal belief distributions of robot pose. Moreover, this method is highly

sensitive to the quality of initial guesses as these are used for initialization. Poor initial guesses

make for a wrong start and result in convergence to an incorrect local minimum. Surmann et al.

(2003) used ICP to create precise 3D maps using a rotating laser scanner on a mobile robot in a
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(a) Geometric registration (or scan matching) matches two scans to find
point correspondences

(b) Registration algorithm uses matches to align the scans taken from two
different sensor poses

Figure 2.2: Example of 3D point cloud registration of an outdoor scene (Figures from PCL (2011))

structured indoor environment. Other methods are proposed which can simultaneously register

multiple point clouds (Craciun et al., 2010), unlike ICP which is valid only for pairs of scans. In

the case of 3D SLAM, where the use of full 3D data becomes necessary, algorithms like ICP which

specialize in working with highly dense 3D range data outperform all other methods.

Due to sensitivity of the iterative method to noise and poor iteration, many variants of the ICP

have been developed to improve the five consecutive steps: selection, matching, rejection, weighing

and transformation estimation. Out of these, the first four compose the correspondence finding

part, and estimation of the transformation is done by minimizing a given function. The matching

step is the biggest bottleneck and improving convergence rate is crucial in making the registration

process faster. To improve matching, robust features should be found which can also improve

erroneous correspondences between points. This would also enable the registration process to
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focus on reliable and relevant regions and produce better transformations. Local descriptors based

on structural point cloud analysis, like the geometrical curvature and position uncertainty used in

Sharp et al. (2002).

Our scan matching method builds on the work by (Segal et al., 2009) called Generalised-ICP

(GICP) which builds a probabilistic framework around ’point-to-plane’ ICP. It utilizes Maximum

Likelihood Estimation (MLE) as the non-linear optimisation step and uses fast and efficient kd-trees

to compute discrete correspondences (Section 4.3.1).

GICP and variants are concerned with pairwise matches, so alignment errors invariably com-

pound. An additional layer is required to ensure global consistency and loop detection. Nuchter et

al. (2007) in their 6D SLAM framework used ICP to attain pairwise alignments and used a global

relaxation technique as post processing. While it is able to solve pairwise linkage inconsistencies,

this method evaluated loop closures with a simple distance criteria (Borrmann and Elseberg, 2008)

and long loops were not detected. A multi-frame odometry-compensated global alignment (MOGA)

algorithm was proposed by Carle et al. (2010) which used a combination of sparse features and

odometry measurements in a batch alignment framework to match laser scan data to orbital maps.

Tong et al. (2012) builds upon MOGA but obviates the use of orbital maps and uses a hybrid of

sparse features and dense data for alignment. While this method generates detailed maps, it isn’t

suitable for use in an autonomous exploratory context since it cannot incrementally build estimated

maps for navigation.

Our approach uses Graph optimisation (Thrun, 2006) for refining our map, which requires the

construction of a graph or a network. The poses of the robot are modelled by nodes in a graph

and labelled with their position in the scene. The edges joining two or more nodes encode the

constraints between robot poses (Figure 4.9). These poses result from observations or from odome-

try measurements. In our method, the SLAM problem is decoupled into two tasks: a front-end,

which deals with graph construction using ICP, and a back-end, which determines the most likely

configuration of the nodes given the constraints in graph edges.

2.3 Artificial Landmarks

Even though our graph optimisation SLAM is specifically tasked with optimising and creating

a globally consistent map, the output is only as good as the poses in the nodes and constraints in

the edges of the graph. This information is fed in by our variation of the Generalized ICP front-end,

which is prone to produce bad transformations due to alignment and data association errors. In the

context of planetary navigation, this is most often caused by the ambiguity and lack of geometric

features in the environment. Our work aims improve localization and reduce correspondence errors

using environment modifiers or artificial landmarks.

Many approaches in literature tackle this problem without using artificial landmarks. Some
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rely on natural features (Leonard and Durrant-Whyte, 1991; Burgard and Fox, 1996) and some use

methods like single cluster graph partitioning to reject local matches that are not globally consistent

(Olson, 2009). Thrun (1998) selects a subset of observed natural landmarks that minimizes the

average posterior localization error. However, these methods fail to perform when the environment

becomes increasingly ambiguous like in our scenario.

The theme prevalent regarding the use of artificial landmarks to aid navigation, is solving the

landmark placement problem. The approaches are concerned with finding an optimal set of land-

mark positions along the desired trajectory of a robot to enhance its localization or navigation

performance. Salas and Gordillo (1998) consider it as an art gallery problem (Lee and Lin, 1986)

and try to maximize and area in which the robot has a clear line of sight to at least one landmark.

Erickson (2011) use the colour information of landmarks to add bounds on visible landmarks of

same colours. Sala et al. (2006) propose an extension of this solution where at least n landmarks

are visible from every point in the map. A metric for pose uniqueness was introduced to help

choose a landmark configuration that would minimize the average ambiguity of the environment

(Meyer-Delius et al., 2011). Beinhofer et al. (2013b) proposes a method to place the minimum

number of landmarks keeping a bound on the maximum deviation of a robot from its desired

trajectory. In an extension (Beinhofer et al., 2013c) he makes the placement method robust to

missing landmarks due to occlusion sensor noise. Some methods tackle the issue using uniquely

identifiable landmarks (Rafflin and Fournier, 1995; Howard et al., 2001). Even though this facili-

tates localization and eases association, it requires landmark coding, a detection and identification

system and complex deployment strategies. Unlike these methods, since we’re using landmarks in

an exploratory navigation context, we do not hold the luxury to install environment modifiers in a

specific configuration before the robot’s motion. Additionally, our landmarks are indistinguishable

which helps overcome associated logistical challenges.

Like us, there are works in literature that consider autonomous landmark deployment. Many

of these address graph like worlds with deterministically observable markers, including Dudek

et al. (1997) who localize a robot travelling along the edges of a graph, detecting markers at the

vertices; and Bender et al. (2002) who use markers to map a directed graph. Wang et al. (2011) use

deterministically observable directed markers to do SLAM in an undirected graph. Batalin and

Sukhatme (2003) present an innovative coverage strategy where a robot deploys active markers

and uses them to move into the direction suggested by the markers. The robots start with no initial

pose estimates. Kleiner et al. (2006) have designed a heuristic that depends on RFID tags and

they estimated obstacle density to deploy RFID markers for aiding a SLAM system. Strasdat et

al. (2009) and Beinhofer et al. (2013a) use Monte Carlo reinforcement learning for computing a

policy for deploying uniquely identifiable landmarks that minimized the distance between the final

robot position and the goal. The difference between the two works is that the latter incorporates the

spatial structure of the environment into the learning method.

In contrast to the above methods, we deploy indistinguishable landmarks on-line, along the
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trajectory of the robot, in no specific configuration.



CHAPTER 3

System Framework

This chapter introduces various software and hardware components of the system used through-

out this thesis. Section 3.1 talks about the sensors used for data collection and Section 3.2 deals

with the robot system used for experiments. Section 3.3 gives an overview of the Rock robotics

software framework and touches on the real time communication aspect of it.

3.1 Sensors

This section will describe the working and performance of the laser scanner systems used for

acquiring dense 3D point cloud datasets used throughout development, testing and experiments.

3D laser data collection on a moving platform like the rover can be quite challenging due to

the relative motion between the scans and the sensor. Due to cost factors, 2D scanners such as

the SICK LMS291 (Figures 3.1a, 3.1b) or Hokuyo URG-04LN, mounted on a rotating platform

have been a popular sensing method for robot navigation tasks. However, a large scan time relative

to robot motion produces distorted and misaligned point clouds and makes it unfit for use. To

counter this, many works (Nüchter et al., 2005; Ryde and Hu, 2007) favour stationary scans by

frequently stopping the sensor platform, but making the task inefficient. Circular 2D line scanner

systems like the Reigl VQ-250 and Optech lynx manage to provide a detailed 360 degree view, but

are prohibitively expensive since two or more of these are required for multiple scan angles and

occlusion removal. They are also quite bulky (Figures 3.1c and 3.1d) and not generally favoured

for mobile robot applications.

David and Bruce Hall developed a high speed multi channel integrated laser scanner for use

at the 2005 Defense Advanced Research Projects Agency (DARPA) challenge, after recognizing

the limitation of using stereo vision for fast mapping in the previous year’s challenge. They further

developed and miniaturised the design to create the Velodyne HDL-64E model which was widely

adopted (Huang et al., 2010) in the 2007 version of the challenge.

14
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(a) One scanner configuration for 360 degree scan (b) 2 scanner configuration (Fraunhofer IAIS)

(c) Reigl VQ-250 (d) Optech Lynx

Figure 3.1: 3D Laser Scanner (LiDAR) alternatives [top: Rotating 2D scanner configurations for
3D data; bottom: Bulky circular 2D scanner systems on SUVs]

In this thesis, we use two scanners from Velodyne’s range of high speed multi element 3D

lidars: the smaller 16-channel VLP-16 and the 32-channel HDL-32E. The VLP-16 was used during

the development process and for hand-held indoor tests, while HDL-32E was used as the sensor

for outdoor tests with mobile robot systems. We will discuss VLP-16 in the next section, since

HDL-32E shares most of the same principles.

3.1.1 Velodyne VLP-16

The Velodyne VLP-16 or Puck is a small, lightweight, real-time 360° LiDAR (or lidar, Figure

3.2) which outputs calibrated reflectivity measurements in addition to range data. Apart from lower

resolution, the thing that differentiates this scanner from its costlier counterparts, HDL-32 and

HDL-64, is the absence of any visible rotating parts, which makes it highly resilient to challenging

environments. Table 3.1 outlines some salient features and compares it with the HDL-32E used on

the robot.

Calibrated Reflectivity

An important feature of the Velodyne lidar is its ability to measure calibrated reflectivity of

the surface the laser bounces back from. This feature is the motivating factor for using reflective
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VLP-16 HDL-32
Channels 16 32

Range 100 metres 80-100 metres

Accuracy +/- 3cm +/- 2cm

Data Rate 300,000 pts/sec 700,000 pts/sec

Vertical Field of View 30°(+/- 15°) 40°(+/- 20°)

Vertical Resolution 2.0° 1.3°

Horizontal Resolution 0.4°@ 20Hz 0.35°@ 20Hz

Power 8W 12W

Weight 0.83 kg 1 kg

Operating Temperature -10° to 60°C -10° to 60°C

Table 3.1: Comparision of Velodyne VLP-16 and HDL-32 LiDARs

(a) Velodyne VLP-16 with a pencil for scale (b) Light & power efficient (Pheonix Aerial, 2014)

Velodyne LiDAR PUCK™

www.velodynelidar.com

Puck ™

Velodyne's new VLP-16 sensor is the smallest, newest, and most 
advanced product in Velodyne’s 3D LiDAR product range. Vastly more 
cost-effective than similarly priced sensors, and developed with mass 
production in mind, it retains the key features of Velodyne’s 
breakthroughs in LiDAR: Real-time, 360°, 3D distance and calibrated 
reflectivity measurements.

3D - Real Time - LiDAR

The VLP-16 has a range of 100m, and the sensor's low power 
consumption (~8W), light weight (830 grams), compact footprint 
(~Ø103mm x 72mm), and dual return capability make it ideal for UAVs 
and other mobile applications.

Velodyne’s LiDAR Puck supports 16 channels, ~300,000 points/sec, a 360° 
horizontal field of view and a 30° vertical field of view, with +/- 15° up 
and down. The Velodyne LiDAR Puck does not have visible rotating parts, 
making it highly resilient in challenging environments (Rated IP67).

VLP-16

VLP-16

Automotive

UAV

Security

Robotics

Mapping

Automation

DIMENSIONS

2X    .16 FEATURES
FOR 5/32in. PINS

7/32in.   5.5mm

88.9mm
3.50in. 0°

90°

1/4-20 MOUNT       
9/32in.  7.1mm

12.7mm MAX
0.50in. MAX

12.7mm MAX
0.50in. MAX

103.3mm
   4.07in.

∅

∅  

OPTICAL 
CENTER

37.8mm
1.49in.

18.8mm
0.74in.

12.7mm MAX
0.50in. MAX

71.7mm
2.82in. 

38.1mm
1.50in. 

ACTIVE AREA
FULL 360°

www.velodynelidar.com

REAL-TIME 3D LiDAR
Data by: Phoenix-Aerial.com

(c) Scanner Dimensions (from VLP-16 (2016))

Figure 3.2: Velodyne VLP-16 LiDAR
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artificial landmarks as environment modifiers. The VLP-16 measures the reflectivity of an object

with 256-bit resolution. Standard reflectivity standards and retro-reflectors are used for the absolute

calibration of reflectivity, which is stored in a the FPGA of the scanner (Figure 3.3). They are

calibrated with two types of reflectors:

• Diffuse reflectors report values from 0-100. This is also the range for the reflectivity values

from most scans in normal modes of operation. Reflectivity from the artificial landmarks

feature on the higher end of this scale.

• Retro-reflectors report values from 101-255, with 255 being calibrated with an ideal retro-

reflector the every value below in that range for imperfect or partially obscured reflectors.

P R I N C I P L E S  O F  O P E R A T I O N   V L P - 1 6  U S E R ’ S  M A N U A L  
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Calibrated Reflectivities 
 
The VLP-16 measures the reflectivity of an object with 256-bit resolution independent of laser power and distance over 
a range from 1m to 100m. Commercially available reflectivity standards and retro-reflectors are used for the absolute 
calibration of the reflectivity, which is stored in a calibration table within the FPGA of the VLP-16. 
 

• Diffuse reflectors report values from 0-100 for reflectivities from 0% to 100%. 
• Retro-reflectors report values from 101 to 255 with 255 being the reported reflectivity for an ideal retro-

reflector and 101-254 being the reported reflectivity for partially obstructed or imperfect retro-reflectors. 
 
Diffuse Reflector 
 
 
 

 
 

 

 
 

 
Retro-Reflector: 
 

 
 
 
 
 

 

 
 
 
Figure 2. Reflector Types 

  

	   	  

	  	  	   	  	  

Black, absorbent diffuse reflector 
(value 0) 

White, reflective diffuse reflector 
(value 100) 

Retro-reflector covered with semi-
transparent white surface (value 101) 

Retro-reflector without any coverage 
(value 255) Figure 3.3: 256-bit Factory Calibration of VLP-16 with Corresponding Reflectors (VLP-16, 2016)

Sensor Driver

The sensor’s driver is developed as an oroGen component (Section 3.3) and is responsible for

carrying out the following operations in order to acquire the 3D range and reflectivity data:

1. Establish communication over ethernet connection with VLP-16

2. Parse UDP data packets for azimuth/rotation angle (α), measured distance/range (r) and

measured reflectivity (I).

3. Calculate the Cartesian coordinates (x, y, z) from the azimuth, range and vertical angle (ω,

fixed and depends on laser ID)

4. Store/pass data to other components
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x

y

z
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ω
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Figure 8. Spherical to XYZ Conversion 

 
4. Plot or store the data as needed 

The calculated X, Y, Z data is typically stored for later processing and/or it is displayed on a computer as a 
series of point clouds. 
 

Note: The VLP-16 has the capability to synchronize its data with GPS precision time via a Pulse 
Per Second (PPS) signal from a GPS receiver. A synchronized timestamp from the VLP-16 sensor 
may be used to match the data stream from the sensor with the data stream from the attached 
external GPS receiver and/or Inertial Measurement Unit (IMU).
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4. Plot or store the data as needed 

The calculated X, Y, Z data is typically stored for later processing and/or it is displayed on a computer as a 
series of point clouds. 
 

Note: The VLP-16 has the capability to synchronize its data with GPS precision time via a Pulse 
Per Second (PPS) signal from a GPS receiver. A synchronized timestamp from the VLP-16 sensor 
may be used to match the data stream from the sensor with the data stream from the attached 
external GPS receiver and/or Inertial Measurement Unit (IMU).

Figure 3.4: Transformation from Spherical to 3D Coordinates

Calculating Cartesian Coordinates

The VLP-16 reports data in spherical coordinate format (r, ω, α) which can be converted into

x, y and z coordinates in the sensor’s frame of reference like shown in Figure 3.4.

x = r ∗ cosω ∗ sinα (3.1)

y = r ∗ cosω ∗ cosα (3.2)

z = r ∗ sinω (3.3)

3.2 Rover: Artemis

The Artemis rover used for experiments in Chapter 5 was developed by DFKI as a competitor

for DLR’s annual SpaceBot Cup (Kaupisch and Noelke, 2014). Artemis (Figure 3.5a) was designed

to navigate in challenging terrain and interact with objects.

Artemis uses a 32-channel HDL-32E Velodyne LiDAR (3.5b) which has an output of more
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(a) The Artemis rover used in DLR’s SpaceBot Cup (b) Velodyne HDL-32E used in Artemis

Figure 3.5: Rover and sensor used for experiments

than double the number of points as the VLP-16 (Table 3.1). Due to this, we use methods like

Voxel Grid downsampling to manage the processing overhead without losing important features of

the cloud. The lidar is mounted at a height of 1.5m above ground.

3.3 Robotic Software Framework: Rock

The development work in this thesis is done entirely in C++ and Ruby in the form of extensions

to a real time Robotic framework created at the Robotic Innovation Center in DFKI Bremen. This

section describes the most essential features of Rock and shows how the thesis benefited from the

modularity provided by this solution.

Rock (Robot Construction Kit) is a robot software integration framework developed at DFKI

and used there for most in-house robot systems. From the official website (DFKI Robotics Innova-

tion Center, n.d.):

Rock (Rock, the Robot Construction Kit, 2011) is a software framework for the

development of robotic systems. The underlying component model is based on

the Orocos RTT (Real Time Toolkit). Rock provides all the tools required to

set up and run high-performance and reliable robotic systems for wide variety

of applications in research and industry. It contains a rich collection of ready to

use drivers and modules for use in your own system, and can easily be extended

by adding new components.

Frameworks can aid management of complex software and has been shown to be increasingly

useful in robotics where a lot of inter-dependent but functionally different software has to be

implemented. Given the need for autonomy and complex systems on a robot system deployed for

space missions, Rock has been found (Joyeux et al., 2014) to be a strong candidate as a robotic

framework owing to its design motivations. Joyeux et al. (2014) also demonstrate it’s effectiveness

on the same rover used in this thesis, Artemis, which participated in DLR’s Spacebot Cup (Kaupisch

and Noelke, 2014) challenge.
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Figure 3.6 shows the components of Rock that help it achieve the following design motivations:

• Application agnostic: Components can be reused across applications and only needs to be

adapted at the time of development.

• Single-purpose components: Rock has a policy split between libraries and modules, which

separates functionality from the communication layer. This makes possible the design

of single purpose modules/components which can leverage common functionalities from

libraries and still be distinct.

• Composability: Rock’s native support for flexible module deployments makes it easy to

build subsystems using components - and build larger (sub)systems using those subsystems.

• Robustness: Rock allows for seamless switching and reconfiguration, at runtime, of different

component networks.

Figure 3.6: Key components of Rock (adapted from Joyeux et al. (2014))



CHAPTER 4

Landmark SLAM

This chapter covers the artificial landmark aided SLAM system developed for this thesis.

Section 4.1 describes the design considerations and specifications of the environment modifier used.

Section 4.2 deals with real time landmark detection and tracking. Section 4.3 details the range data

based SLAM implementation consisting of ICP based front-end and graph optimisation back-end.

Section 4.4 explains how to use the detected landmarks in the Graph SLAM implementation and

provides an algorithm on how to handle detected landmarks.

4.1 Artificial Landmark Design

In this section we discuss the design considerations for choosing a good artificial landmark for

the environment that the rover is used in.

In order to detect our artificial landmarks, we are leveraging the ability of our sensor to de-

tect calibrated reflectivity values of points in our environment. The following factors have to be

taken into account in the design or our landmark:

• Surface reflectivity

• Distinguishability: whether or not they should be uniquely identifiable

• Size and Shape

4.1.1 Relative reflectivity

The landmark’s surface should be more reflective than most surfaces in our environment of

operation. This isn’t much of a problem in planetary environments with dull natural structures like

sand, rocks and caves. Additionally, reflectivity changes with factors like lighting, environment

media, distance and laser angle of incidence; thus the choice of a surface has to have enough

reflectivity so as to account and compensate for these variables.

Using a reflective coating or a covering is easier than looking for landmarks with shiny surfaces.

21
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Figure 4.1: Reflective tape types tested for reflectivity return values

This covering can be in the form of reflective paint or tape. After investigating the effectiveness

of various reflective tapes (Figure 4.1), we settled for one which returned an average reflectivity

of around 75/255 in an environment where most points don’t return values higher than 40/255
(Section 3.1.1).

4.1.2 Distinguishability

The landmarks can either be uniquely identifiable or indistinguishable. As discussed in Section

2.3, while unique landmarks are more helpful and make the data association problem simpler,

using them can be logistically challenging in terms of storage and deployment. Moreover, colour

coding a landmark isn’t possible since it necessitates usage of some sort of codes which brings

forth problems in detection due to landmark orientation and poses.

Given the above problems with distinguishable landmarks, we use indistinguishable ones which

prove to be a lot easier to deploy and detect in the planetary environment.

4.1.3 Size and Shape

As discussed in Section 2.3, our environment modifiers have to be autonomously deployed, so

the storage and deployment processes have to be made easier and shielded from possible complica-

tions. This can be done by considering the effects of landmark shape and size on logistics, while

maximizing visibility and detectability.

Spherical surfaces have the advantage over planar surfaces, where the curvature increases the

probability of laser reflectance given the varying sensor orientation and the laser’s angle of inci-
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Figure 4.2: Artificial landmarks - The first and the third are covered with tape while the middle
ball is coated with reflective paint.

dence on landmark surface. Spheres also have the advantage over other regular curved objects like

the cylinder when it comes to ease of deployment.

Since the lasers are divergent, there is a bound on the maximum number of points on the surface of

our modifiers (landmarks) that can reflect back these lasers. This maximum steadily decreases as

the sensor distance from the landmark increases. In our tests with the 16-channel VLP-16 and the

third ball in Figure 4.2, we got a maximum of 15 reflected points when the ball was at a distance of

1 metre, all the way up to only 2 points when it was 5 metres away. The ball was not detectable

beyond 5 metres.

Spherical artificial landmarks with dimensions in the range of 3 to 5 cm diameter are consid-

ered for use in this thesis (Figure 4.2).

4.2 Landmark Detector

This section describes the components used for the landmark detector algorithm. The algorithm

is developed in indoor environments using the 16-channel Velodyne VLP-16 before testing on the

Artemis robot.
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The subsequent subsections describe the components of the landmark detector system. Note

that the below methods are not just developed for a reduced cloud consisting of points with high

reflectivity values. For generality, they are tested on normal point clouds before adapting them for

our case use.

Figure 4.3 shows the pipeline of the landmark detector.

[Not supported by viewer] [Not supported by viewer] [Not supported by viewer] [Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

Figure 4.3: Landmark detection pipeline

4.2.1 Thresholding

Thresholding helps reject all points in the cloud which have a lower reflectivity than a pre-

determined value. The threshold is variable and depends on the distance of a point from the sensor.

After repeated tests, an optimal threshold-distance relation (equation 4.1) is developed.

Let there be a point P = {x, y, z, I}, where x, y and z are its Cartesian coordinates and I is

its normalized calibrated reflectivity value, that is, I ∈
[
0.0, 1.0

]
. Then the threshold value t for

point P is governed by

t = t0 −
D

40 (4.1)

where t0 is the base threshold value and D is the distance of a point from the sensor. The value of

t0 was determined during tests and is found to be in the range of 0.38 to 0.42. This value holds true

for the 32-channel HDL-32E LiDAR as well.

D =
√
x2 + y2 + z2

Given the size of the landmarks, the maximum distance they can be detected is around 10metres.

So we will not be searching for landmarks in distances (D > 16metres) where equation 4.1 would

return a negative threshold t.
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Simple thresholding of point cloud reflectivity values to detect our reflective landmarks isn’t

effective. As shown in Figure 4.4, during tests in an indoor environment, we observed a lot of

outliers, noise and high reflectivity of multiple planar points like on walls.

4.2.2 Planar Segmentation

The point cloud that has reflectivity values higher than the threshold (white points in Figure 4.4),

are seen to mostly lie on walls. We also notice that these undesirable points have reflectivity values

similar to the points on our landmark’s surface, so stricter thresholding is not the solution. We re-

quire a way to reject all points lying on the wall by exploiting the fact that they are on the same plane.

Removing points lying on a planar surface requires a way to segment the point cloud by grouping

together points lying on the same 2D surface. We use a segmentation procedure based on the

Random Sample Consensus (RANSAC, Fischler and Bolles (1981)) algorithm. The algorithm takes

set of observed data values, a parametrized model which can explain or be fitted to the observations,

and some confidence parameters as inputs. It then performs the following in order:

1. Selects a ransom sample set of points from the input point cloud.

2. Computes a model of a plane given those points

3. Counts the number of points lying on that plane from the global set; these are the inliers.

4. Repeats the above process until it finds a model which returns the maximum number of

inliers.

5. Tags the indices of the points in this subset of the cloud and calls it the largest plane.

6. Removes the largest plane from the original point cloud.

7. Repeats the above process until the points in the original point cloud goes below a pre-

determined threshold.

Figure 4.5 shows the effect of planar segmentation on a general point cloud. The cloud to the

right shows five different planes extracted from the left. Note that this step is only developed

so as to aid the indoor development of the algorithm and it isn’t required in outdoor detection of

landmarks. This is because a rover wouldn’t be expected to encounter smooth plane surfaces in

planetary conditions.

4.2.3 Clustering

The planar segmentation method above works well for the majority of points on planes. How-

ever, as seen in Figure 4.6, it fails to extract all points on the plane and does not deal with noise or

points not on any plane. Fig 4.6b shows that we still have points on the walls after removing the 35

largest planes from the original cloud. We need another layer of pre-processing in order to be able
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(a) Threshold = 76

(b) Threshold = 97

(c) Threshold = 102

Figure 4.4: Effects of pure thresholding of reflectivity values on detection the landmarks (marked
in red ellipses). This figure shows that the noise and outliers have roughly the same reflectivity
values as our landmarks, since upon increasing it from 97 to 102 we can’t see either. The reflectivity
values are on a scale of 0 to 255
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(a) Original point cloud

(b) Point cloud with five extracted planes

Figure 4.5: Planar Segmentation using RANSAC
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(a) Point cloud after removing 5 largest planes

(b) Point cloud after removing 35 largest planes

Figure 4.6: Remaining points after removing 5 and 35 largest planes from the point cloud in Figure
4.5a
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to detect our landmarks, and we take advantage of the fact that the noisy points remaining after

planar segmentation are sparse and spread out.

Clustering is the operation where points are grouped together based on some similarity crite-

ria. For us, this similarity criteria is Euclidean distances between points. We use an efficient form

of clustering based on kd-tree search to group points which are close together.

The kd-tree (k-dimensional tree) is a data structure used for range and nearest neighbour searches.

Since our search space is 3D space, we will be using the 3 dimensional kd-tree.

The clustering algorithm can be tweaked using the following parameters

1. Cluster tolerance: The distance around a point within which another point would be consid-

ered its neighbour. The higher this value is, the greater is the chance that distinct landmarks

close to each other would be perceived as one. This value has to be greater than the accuracy

of the sensor, that is 2cm for the VLP-16 and 3cm for HDL-32E (Table 3.1).

2. Minimum cluster size: This is the minimum number of points required in a vicinity to be

classified as a cluster.

3. Maximum cluster size: This is the maximum number of points required in a vicinity to be

classified as a cluster.

The values of maximum and minumum cluster sizes should be set keeping in mind the maximum

points reflected off from the landmark surfaces are various distances from the sensor, as discussed

in Section 4.1.3. Figure 4.7 shows clustering of a point cloud (from Figure 4.5a) after 35 iterations

of plane segmentation and removal. The tolerance is 3 cm, and the minumum and maximum cluster

sizes are 5 and 10 respectively.

Clustering is accompanied by the calculation of a representative point or a centroid for each

cluster. This is simply the mean of the x,y and z coordinates of each point in the cluster.

Let L be the points in a detected cluster.

L =
{
ci
}

where ci are the points in the cluster. Let C be the cluster centroid.

C = 1
n

( n∑
i

ci

)
(4.2)

The centroid points are then added to the filtered point cloud and used as an input for polling and

landmark SLAM modules.
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Figure 4.7: Clustering: 77 clusters identified after 35 largest planes were removed from the point
cloud in Figure 4.5a

4.2.4 Polling

Thresholding, planar segmentation and clustering provide agreeable results in an indoor envi-

ronment when the sensor is not in motion as shown in Figure 4.8. When the sensor is in motion

however, we notice that landmarks are not detected consistently. We would obtain a centroid in one

point cloud and it might disappear in the next one, only to reappear in the subsequent one. This is

observed even when the sensor is moving with a low speed (around 5 km/h). Moreover, there might

be some misidentified clusters, especially in the outer region of the scan. This is usually because

the thresholding layer allows for less lenient filtering of reflectivity values, the further a point is

from the sensor (Equation 4.1).

To remedy this, we add another layer which tracks each detected landmark centroid through

3 or more frames (a frame is a 360°scan), and distinguishes between real landmarks and noise.

Based on how consistently a landmark is detected, it will also consider a detection even though the

landmark might not be visible during a frame. Algorithm 1 shows how this was achieved. Here

past is a vector of vector of centroid positions of landmarks detected in the past n frames.

The result of the polling algorithm is the 3D position of a landmark lk. Let Ck be the centroid

of the cluster of landmark lk which has survived the polling round by consistently being tracked for

a set number of frames.
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Algorithm 1 Polling
procedure TRACKANDFILTER(past, pointCloud)

past← structure of vectors of centroids in past n frames
n← size of past
centroid ∈

[
x, y, z,match

]
if n > 2 then

for all i from 1 to n do
for all centroid1 from past

[
i
]
.begin to past

[
i
]
.end do

for all centroid2 from past[i-1].begin to past
[
i-1
]
.end do

if distance (centroid1, centroid2) > 50cm then
centroid1[match] + = 1

end if
end for
if i > 1 AND centroid1[match] == 0 then

for j from i to 1 do
for centroid3 from past

[
i-2
]
.begin to past

[
i-1
]
.end do

if distance (centroid1, centroid2) > 50cm +(50cm ∗ (i− j)) then
centroid1

[
match

]
+ = 1

end if
if centroid1

[
match

]
> 0 then

break
end if

end for
end for

end if
for centroid4 from past[n− 1].begin to past

[
n− 1

]
.end do

if centroid4
[
match

]
> 2 then

pointCloud← centroid4
end if

end for
past← pop out first vector

end for
end for

end if
end procedure
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Figure 4.8: The remaining cloud after thresholding, removing planar noise and clustering clearly
detects the two landmarks (marked by the red ellipses). The red points represents the centroids of
the two clusters.

Ck = [x, y, z] (4.3)

4.3 SLAM system

This section details the working of the SLAM system. Section 4.4 will look into using land-

marks to get better results from this system.

As introduced in Section 2.3, the existing SLAM implementation is decoupled into two main

stages: Front-end and Back-end SLAM.

4.3.1 Front-end SLAM

The front-end is dependent on sensor data and deals with aligning raw data and constructing a

pose-constraint representation. This representation is called a graph and it visualizes the spatial

constraints between robot poses modelled in the form of a dynamic Bayesian network. The con-

straints are encoded as edges of the graph and the graph nodes represent the robot poses that result

from scene observations as shown in Figure 4.9.

In Figure 4.9, the graph edge consists in a probability distribution over the transformation between

two poses (or nodes). This observed transformation (Tab) is calculated by aligning the point cloud
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xa

x3

x2

xb

xt−1

xt

x1

x4

〈Tab,Ωab〉

Figure 4.9: A graph representation showing nodes representing robot poses x1, x2..xt−1 and a
constraint between two poses xa and xb. Constraints between consecutive nodes are shown by
solid red arrows. These constraints (Tab) are a result of sensor observations, and is obtained by
the ICP front-end. The dotted arrows arise due to multiple observations of the same part of the
environment and are obtained using Breadth First Search in the vicinity of each pose. They are a
result of the spatial constraints of the graph. (adapted from (Grisetti et al., 2010))

data acquired at two robot poses using the Generalized Iterative Closest Point algorithm (GICP, as

introduced in Section 2.2). A graph is constructed using the results of ICP and associations due to

repeated observations of the same part of the environment. These associations (dotted lines in 4.9)

are a result of the spatial constraints in the graph.

The transformation estimation by scan alignment and subsequent graph constructions constitutes

the bulk of the front-end SLAM of our system.

Generalized ICP

Consider observations made by the LiDAR at two robot poses xa and xb in the form of two

point clouds.

Let the two point clouds be

A =
{
ai
}

B =
{
bi
}

(4.4)
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Let T be the final transformation which aligns A and B. Using odometry measurements, we also

have an initial transformation T0. So ideally,

bi = Tai (4.5)

Through the following algorithm we hope to make (T0) converge to T.

Starting from T0, we iterate through the point cloud A to calculate (T · ai). We then find

the closest point in B to (T0 · ai) using 3D Euclidean distance to form a corresponding pair ai and

bi.

Additionally, we eliminate pairs of points (ak and bk), if

||bk −T · ak|| ≥ d (4.6)

where d is the matching threshold, which is the distance between two closest points in the two

point clouds above which they are not considered corresponding. This accounts for the possibility

that some points in one scan will not have a matching point in the second cloud due to reasons

like being outside the cloud boundary. This value is a trade off between accuracy and convergence

since a large value would lead to incorrect correspondences, while a low value would cause a bad

convergence.

The resulting point clouds contain only points which have a match in the other point cloud.

The following equation should make T converge to the correct transformation between the two

point clouds.

T = argmin
T

{∑
i

||T · ai − bi||2
}

(4.7)

We now use probabilistic models to solve the minimization step in Equation 4.7. Let’s consider an

alternate probabilistic model of the two point clouds A, B and the points inside of them.

Â =
{
âi
}

B̂ =
{
b̂i
}

where â1, â2 · · · ân and b̂1, b̂2 · · · b̂n represent the Gaussian mean of the location of points in

point cloud Â and B̂ respectively.

âi ∼ N
(
âi, C

A
i

)
b̂i ∼ N

(
b̂i, C

B
i

)
here,

{
CA

i

}
and

{
CB

i

}
are covariance matrices associated with the measured points. Assuming

geometrically consistent correspondences with no occlusion or sampling errors,

b̂i = T∗ · âi (4.8)
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where T∗ is an assumed correct transformation for the probabilistic model. We define a

distribution d(T∗)
i which is derived from Equations 4.5 and 4.8

d
(T∗)
i ∼ N

(
b̂i − (T∗)âi, C

B
i + T∗CA

i

(
T∗
)T )

= N
(
0, CB

i + T∗CA
i

(
T∗
)T )

By applying Maximum Likelihood Estimation (Wikipedia, 2016; Segal et al., 2009), we

iteratively compute T:

T = argmax
T

∏
i

log(p(d(T)
i ))

where (p(d(T)
i )) is the probability of the distribution. This can be simplified to

T = argmin
T

∑
i

d
(T)T

i (CB
i + TCA

i TT )−1dT
i (4.9)

The T obtained here is used to construct the graph which is then forwarded to the SLAM back-

end. The advantage of Generalized ICP used here is that by selecting different structures of CA
i

and CB
i , we can incorporate the information about local structure of both scans to form better

correspondences. For example, to implement a plane-to-plane version, from (Segal et al., 2009), set

CA
i = Rna ·


ε 0 0
0 1 0
0 0 1

 ·RT
na

(4.10)

CB
i = Rnb

·


ε 0 0
0 1 0
0 0 1

 ·RT
nb

(4.11)

where na and nb are normal vectors at ai and bi respectively, the 3× 3 matrix and ε represent the

covariance matrix of a point whose surface normal is e; and Rx is the rotation matrix from basis

vector e to x.

Figures 4.10a and 4.10b show alignment of a point cloud in a structured indoor environment

with a randomly rotated version of itself. Figures 4.10d and 4.10c show the same for another indoor

environment for double the number of ICP iterations.

Data Association

Data association is primarily done using the plane-to-plane directive as introduced above for

point matching. Essentially, the point cloud is assumed to have more structure than an arbitrary set

of 3D points in the sense that points are assumed to be part of a plane.

The point cloud is assumed to be locally planar and points are distributed assuming they have a

high covariance in the local plane and very low covariance in the direction of the surface normal at
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(a) Corridor: Red is after 1 iteration

(b) Corridor: Red is after 5 iterations (c) Room: Red is after 10 iterations

(d) Room: Red is after 1 iteration

Figure 4.10: Point cloud alignment using ICP in different indoor environments. White is the
original point cloud, which is randomly rotated to form the green point cloud and red is the point
cloud after n iterations of ICP.



CHAPTER 4. LANDMARK SLAM 37

that point. The equations 4.10 and 4.11 describe this covariance.

Additionally, every time a robot pose is registered on the graph, the algorithm looks for nearby

poses using breadth first search using a neighbourhood distance criteria. Upon finding a nearby

pose, the graph invokes ICP between that and the new pose to determine the transformation and

create what is known as an indirect edge (Section 4.4). This helps in establishing constraints

between non-consecutive robot poses and proves for better graph optimisation.

Evaluation Criteria

The validity of an ICP estimate can be quantified through a Euclidean fitness score. A fitness

score (f ) is the normalized sum of squared distances between corresponding points in the source

and target point clouds and ranges between 0 to 1. A score of 1 means perfect alignment. The

transformation T obtained from equation 4.9 is used to construct the edges in the graph for

consecutive nodes. This forms the observed transformation which is then made globally consistent

by the graph optimisation back-end.

Configuration parameters

Our algorithm and experiments use the following parameters to tweak and fit the functionality

of ICP to the requirements of a particular task

• Maximum correspondence distance (d): This is the maximum distance between two points

in two point clouds to be considered corresponding (Equation 4.6).

• Maximum fitness score: This is the maximum score ICP aims for during iterations (Section

4.3.1).

• Maximum iterations: The number of ICP alignment iterations to perform until the maximum

fitness score is achieved.

• Transformation epsilon: Maximum allowable difference between two consecutive lateral

transformations for convergence.

• Rotation epsilon: Maximum allowable difference between two consecutive rotations for

convergence.

• Correspondence randomness: Number of point neighbours when selecting zones for comput-

ing covariances.

The values for the above parameters depend upon the application requirements and a trade-off

is usually made between performance and speed of the alignment.

4.3.2 Back-end SLAM

We now intend to compute a Gaussian approximation of the posterior over the rover’s trajectory.

Finding the configuration of nodes that maximizes the likelihood of pose observations results in us
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obtaining a mean and subsequently the information matrix of the Gaussian. This can be categorised

as a constraint maximization problem.

Let

Tab(xa, xb) = T

be the observed transformation between the rover poses xa and xb, and Ωab its information matrix,

as obtained from our ICP algorithm (Equation 4.9). Subsequently, let T̂ab be the expected mean

and information matrix of the transformation between rover poses xa and xb.

The error function will be the difference between the expected observation T̂ab and the real

observation Tab of the transformation between the rover pose xa and xb

eab(x) = Tab − T̂ab(xa, xb)

To find the maximum likelihood, we define the log-likelihood ((Grisetti et al., 2010)) lab of Tab

as,

lab ∝ eab(xa, xb)T Ωabeab(xa, xb)

The goal here is to find a configuration of poses x∗ that minimizes the negative log-likelihood

function F(x) of all observations

F(x) =
∑
〈a,b〉∈C

eT
ab(x) Ω eab(x)

=
∑
〈a,b〉∈C

Fab(x) (4.12)

Essentially, the configuration of nodes x∗ is

x∗ = argmin
x

F(x) (4.13)

Gauss-Newton

We use the Gauss-Newton algorithm to obtain the solution of Equation 4.13 (like in Grisetti et

al. (2010)). We start by approximating the error function (eab) using first order Taylor expansion

and an initial guess of rover poses x̃ with increments of ∆xa and ∆xb.

eab(x̃a + ∆xa, x̃b + ∆xb) = eab(x̃+ ∆x)

' eab(x̃) + Jab∆x

' eab + Jab∆x (4.14)

Here, Jab is the Jacobian of eab(x) in x̃. From equations 4.12 and 4.14

Fab(x̃+ ∆x) = eab(x̃+ ∆x)T Ωab eab(x̃+ ∆x)

' (eab + Jab∆x)T Ωab (eab + Jab∆x)

= eT
abΩeab + 2eT

abΩabJab ∆x+ ∆xT JT
abΩabJab ∆x

= cab + 2bab∆x+ ∆xT Hab∆x (4.15)
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where,

cab = eT
abΩeab (4.16)

bab = eT
abΩabJab (4.17)

Hab = JT
abΩabJab (4.18)

To generalise the negative log-likelihood over all poses in x, from Equation 4.12,

F(x̃+ ∆x) =
∑
〈a,b〉∈C

Fab(x̃+ ∆x)

'
∑
〈a,b〉∈C

cab + 2bab∆x+ ∆xT Hab∆x

= c + 2 b ∆x+ ∆xT H ∆x (4.19)

Since H =
∑

Hab is obtained by using Jacobians to project measurement errors in the space of

path trajectory, it is the information matrix of the system. It has a sparse structure and contains

non-zero elements between nodes connected by a constraint. The pose increments ∆x∗ for a

configuration of nodes x∗, can be obtained by solving the linear system:

H ∆x∗ = −b (4.20)

We now solve the linear Equation 4.20 using sparse Cholesky factorization to obtain the

increment ∆x∗. This is then added to the initial guess to obtain the optimal configuration of nodes

that minimizes the negative log likelihood in Equation 4.12 .

x∗ = x̃+ ∆x∗ (4.21)

We use the graph optimisation software module from Kümmerle et al. (2011) called g2o.

Our implementation runs about 100 iterations of pose graph optimisation for the current graph

configuration every time the back-end is invoked. To reduce processing overhead, we only invoke

the back-end after a certain number of ICP iterations. This number is called the optimisation rate

(optimizationRate).

4.3.3 Coupling

Concluding from the last two sections, our SLAM pipeline is as shown in Figure 5.3. We run

the ICP front-end for every scan by the LiDAR and obtain a transformation Tab(xa, xb) between

two rover poses xa adn xb. Using this, we construct a graph (Figure 4.9) by adding vertexes to it

in the form of the two robot poses and an edge between them. After this, we search for nearest

pre-existing poses (using breadth first search) in the graph and construct additional edges. This

constitutes the front-end.

Then we invoke the graph optimisation back-end for every few number of scans (optimisationRate)

to obtain a better configuration of our poses (x∗) within the constraints. This continues until the

robot has finished acquiring scans and we then use our extensive graph to create the pose map.

The next section introduces a landmark based method to facilitate this process.
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Figure 4.11: Graph representation with artificial landmarks

4.4 Landmark SLAM

We propose altering the graph construction algorithm to include landmark poses as nodes to

the graph. We call them secondary nodes.

Figure 4.11 is an extension of Figure 4.9. Using landmarks we append the graph with additional

nodes l1, l2, ...ln. Here, pka is the position of landmark lk in the frame of xa. This means pka is the

output of the landmark detector when it saw lk from robot pose xa. From equation 4.3,

pka = [x, y, z] (4.22)

We define and make a distinction between direct and indirect edges in the graph of Figure

4.11. Direct (solid red lines) are edges between consecutive robot poses. They are formed as a

direct result of ICP alignments. Every robot pose (except the first and the last) has two direct edges.

Indirect (dotted red lines) edges are formed as a result of neighbourhood searches from a pose.

They are a means of recognising nearby poses and data association.

Whenever the same landmark is detected by the rover in two different poses xa and xi, if the

relationship between the two poses meets the criteria defined in the list below, we can calculate an

estimated transformation Tai.
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The following are the steps to process a landmark once it is detected.

1. Landmark lk detected from pose xa.

2. Store landmark centroid in pka.

3. Landmarks lk and lj are now detected from pose xi.

4. Store landmark centroids in pki and pji respectively.

5. If no edge between xi and xa exists, break and return.

6. If edge between xi and xa exists, check the type of the edge they share. If it’s an indirect

edge, replace the Tai with one calculated from pka and pki.

7. If the edge is direct, check the fitness score of the ICP.

8. If the fitness score is below a threshold value, replace the Tai with one calculated from pka

and pki

9. Invoke graph optimisation.

Calculation of the transform Tai makes use of the fact that initial estimates of the two robot

poses exist (from when they were formed during ICP).

The transformation estimates calculated from this method are given a lower priority to the ones

calculated from several ICP iterations. This is why the ICP fitness score is taken into account

before using the calculated estimate.

The algorithm 2 summarizes the landmark handling by our graph optimisation back-end.

In the next Chapter, many tests are conducted on real world data with a robot which validates

our front-end, back-end and landmark SLAM system.
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Algorithm 2 Landmark extension to SLAM system
procedure BALLDETECTED(Pose xi, ballPos pki, neighbourPoses X )

for all xa ∈ X do
if pka exists then

if (xi, xa)→ indirectEdge then
Tai← f(pki and pka)
graphOptimize()

end if
if (xi, xa)→ directEdge then

if (xi, xa).fitnessScore()<threshold then
Tai← f(pki and pka)
graphOptimize()

else
break

end if
end if

end if
end for

end procedure
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Experiments and Results

This section briefly describes the test set-up and results obtained from the mapping algorithm.

Section 5.1 introduces a map visualization method. Section 5.2 details the experimental arrangement

including the problem task, constraints and the test area. Section 5.3 shows the results of various

outdoor experiments with the Artemis robot and Section 5.4 summarizes and discusses these results.

5.1 Visualization: Multi-level Surface maps

We use multi-level surface maps (MLS, Triebel et al. (2006)) as a map representation in this

section. This is a grid based map where each cell in the grid can have multiple surface patches

(Figure 5.1a). Patches have their positions expressed in a Gaussian distribution, and each patch can

has a mean µ (its position) and a variance σ (its thickness). Furthermore, a patch can also have

depth d, depending on whether the object surface it represents is flat or not.

Figure 5.1c shows an MLS map created by our algorithm on moving the VLP-16 sensor in a

corridor (Figure 5.1b). The shades of red show uncertainty in a patch, green shows vertical and

blue horizontal cells.

5.2 The Test Area

In order to emulate a planetary scene, one of the primary requirements for our test area was

for it to be relatively free of features. Finding such places in a city is hard, and we used an empty

plot (Figure 5.2) of land for this purpose. Since there were streets and buildings around it, we had

to resort to pre-processing methods like filtering out points too far from the sensor to ’blind’ the

rover from those features. In this way, we were able to approximately simulate the conditions on a

planetary surface.

The Artemis rover (4.1.3) is used to carry out test runs on the ground in Figure 5.2a. The rover was

retrofitted with wheels meant for traversing hard ground as shown in figure 5.2d. The tests involve

moving the rover around various landmark configurations, which were placed above bricks (5.2b)

to avoid being occluded by the sparse ground vegetation.

43
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(a) MLS structure (Reproduced: Triebel et al. (2006)) (b) The sensor travels 5 metres in this corridor

(c) MLS map of a corridor

Figure 5.1: Map Visualization

5.3 Experiments

This section shows the results of navigation and mapping by our robot in various outdoor

experiments. The tests are conducted in different types of outdoor environments to highlight the

problem and the propose a solution.

5.3.1 Navigation without Landmarks

Process Flow

Figure 5.3 shows a functional flowchart for the processes involved in navigation without

landmark.
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(a) The test area (b) Landmark placement

(c) Buildings, trees and cars in the vicinity (d) The Robot: Retrofitted Artemis

Figure 5.2: Test Set-up

Experiment in an Urban Environment

We will discuss the results obtained by performing SLAM (front-end and back-end) on a 140m

path in an urban environment, using only the Velodyne HDL-32E mounted on Artemis.

Figure 5.4a shows that this route is inundated with buildings, cars and trees, thus represent-

ing a typical urban scene. Using just the Velodyne sensor, our algorithm should perform well

without artificial landmarks.

Figure 5.4b shows that this indeed is the case. The SLAM front-end managed to align the point

clouds, while the pose graph errors seem to be minimized by the graph optimisation back-end

as well. The straight red line shows the rover’s trajectory, and the MLS map of the route looks

consistent.

Experiments in the Test Area

This subsection will discuss the results of mapping the rover’s path across our test area (Figure

5.2a). We test under different trajectories with increasingly limited robot perception (filtering out

the point cloud by setting dmax).
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Navigation and mapping without artificial environment modifiers
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Figure 5.3: Flowchart for navigation and mapping without landmarks

Given our landmark’s size, the following tasks are carried out in an area of 15 × 15 metres

of ground. The experiments involve localizing, plotting trajectory and mapping the environment in

different robot routes anad for varying artificial landmark configurations. For the first test (Task 2),

we control the robot to move in the path shown in Figure 5.5b.

We show results of the task using only the ICP (figure 5.5a), and using both the front-end and the

back-end (Figure 5.5b). Here we have not filtered out long range points (lidar range dmax = 75m)

and features like cars, buildings and pedestrians provide enough structure for good ICP alignment.

The less error-prone ICP then produces sound estimates for the graph optimisation back-end. Here,

back-end runs after every 10 scans, or 10 iterations of the ICP front-end (optimsationRate = 5).
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(a) The urban test path

(b) Task 1: MLS map along with the robot’s trajectory and final pose

Figure 5.4: Test: Urban Environment with full LiDAR range



CHAPTER 5. EXPERIMENTS AND RESULTS 48

(a) Only front-end (b) Front-end and back-end

Figure 5.5: Front-end and back-end: Robot start pose, trajectory and MLS map at final pose for
Task 2 (dmax = 75m). Both are not using landmarks.

Because of this, the Figure 5.5b will be used as the benchmark against which SLAM with landmarks

will be compared in Task 2.

Apart from some sparse vegetation, the test area has structured features like buildings and cars

in its environment (as shown in Figure 5.2c). Figure 5.6a shows the same navigation task where

points at a distance (dmax) greater than 10 metres from the sensor are filtered out. This simulates a

planetary surface because of the lack of features in the immediate vicinity of the sensor mounted

on our rover.

However, at some poses in the rover’s trajectory, features like cars and the street fall within

these 10 metres, so Figure 5.6b shows the results of our algorithm with dmax = 5m for the same

navigation task. These results are obtained by running front-end as well as back-end SLAM. The

graph optimisation back-end is run every 10 iterations of ICP and adding nodes to the graph.

5.3.2 Navigation with Landmarks

Five landmarks (figure 5.2b) are placed randomly along the path of the robot in different

configurations. The rover then completes certain navigation tasks around them and we present the

results in the sections ahead. It’s worth noting that for outdoor experiments, the planar segmentation

and rejection module of the landmark detector (Section 4.2.2) was not used. This is because of the

lack of smooth planes in the outdoor environment which could throw noisy reflectivity values to

confuse the detector.
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(a) dmax = 10m (b) dmax = 5m

Figure 5.6: Limited Range: Task 2 (Not using landmarks)

Process Flow

Figure 5.7 shows a functional flowchart for the processes involved in navigation with landmarks.

This is the extension to the flowchart in figure 5.3.

Experiments in the Test Area

Landmarks are placed in various configurations and the results are shown below. The tests are

completed for dmax = 10m instead of 5m. This is because in the latter case, the rover isn’t able to

detect landmarks in most cases since the landmarks are small (and require multiple reflected points

for detection), and the sensor is at a height of 1.5m on the robot. This obviates the advantage of

our landmark SLAM extension (Section 4.4) and returns results similar to Figure 5.6b.

The graph optimisation back-end is invoked in the following cases

• After every 10 ICP iterations.

• If the landmark extension changes a transformation (Algorithm 1.2).

Because of the lack of a GPS module on the test rover, we do not have a ground truth for the

robot’s trajectory. Even with a GPS module, getting a 10 metre accuracy would have been diffi-

cult. Hence we will attempt to compare our landmark SLAM results with those obtained without

landmarks but with a large sensor range of dmax = 75m (Figure5.5b). We have superimposed

landmark positions on that figure, which were arbitrarily determined as shown in Figure 5.6a.

Figure 5.8d shows that most landmarks were detected in a 3 metre radius around the sensor.

This is mostly because of the size of our landmarks and the divergent lasers from the scanner.

Figure 5.8b shows a marked improvement of the rover localization as compared to the non-landmark

result in figure 5.6a for dmax = 10m.
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With Landmarks
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Figure 5.7: Flowchart for navigation and mapping without landmarks

For Task 3, the landmark configuration is superimposed on landmark-less SLAM results with

a long sensor range of dmax = 75m and shown in Figure 5.9a. This will form our basis of

comparison since the abundant structural features in the distance (d > 15m) prove for a good ICP

alignment. This particular task doesn’t contain sharp turns, or tight loops and the alignment results

for dmax = 10m are very similar for navigation with and without landmarks as shown in Figures

5.9b and 5.9c. These results seem mostly consistent with our benchmark figure 5.9a, although

SLAM with landmarks fits it better. Figure 5.9a shows the landmarks detected (white circles) on an
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(a) Landmark configuration on Figure 5.5b (b) Top view: Landmark SLAM (dmax = 10m)

(c) Side view with circled detected landmarks

(d) Position of all detected landmarks relative to the
sensor at time of detection. Grid size is 1m.

Figure 5.8: Task 2: Navigation with landmarks (dmax = 10m)
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(a) Landmark configuration (b) Without landmarks (10m) (c) With Landmarks (10m)

(d) Side view of Figure 5.9b with detected landmarks (circled)

Figure 5.9: Task 3 : Navigation with landmarks

MLS scan during landmark SLAM.

Task 4 consists of travelling straight with landmarks on both sides and returning to the start

position after a sharp U-turn. Like before, figure 5.10a provides the benchmark for comparison.

This was the result when the algorithm (front-end and back-end) was run with dmax = 10m without

landmarks. Figure 5.10b shows the results of SLAM without using landmarks with a short sensor

range input of dmax = 10m. It can be seen that the sharp turn resulted in a drift and an error in

orientation estimation. This drift got wider as the rover continued and resulted in an erroneous end

position. Possible reasons for this might be inability of the ICP algorithm to align point clouds
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(a) Landmark configuration (b) Without landmarks (10m) (c) With Landmarks (dmax = 10m)

(d) Side view with detected circled landmarks in Figure 5.10c

Figure 5.10: Task 4: Navigation with landmarks

generated during the 180° turn. Figure 5.10c shows that landmarks were able to correct the bad

estimate. However, while the robot end position is similar to Figure 5.10a, the trajectory varies.

5.4 Discussion

The decoupled SLAM system performed well in urban scenes with structures like buildings,

cars, trees and the street. The abundance of features in the environment obviated the need to use
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our artificial landmark system. Raw scan matching coupled with consistent error minimization

by the back-end was enough for a good SLAM system that didn’t have to rely on odometry or an

Inertial Measurement Unit (IMU).

The test area wasn’t secluded enough and since our primary sensor has a range of 80-100 metres

(Table 3.1), the features in the vicinity made our SLAM algorithm return sound results. Handicap-

ping our sensor was a way to simulate conditions similar to our use case, which resulted in drift

and trajectory errors by our SLAM system (Figures 5.6a, 5.6b, 5.9b and 5.10b). The landmark

extension to the back-end (Section 4.4) proved to be useful in these cases. The results obtained

using landmarks corrected for trajectory errors (figure 5.9c), bad localization (figure 5.8b) and

orientation drift (figure 5.10c). These figures also show that there are minor inconsistencies in the

trajectory when compared with results from SLAM without sensor handicap (dmax > 50m).
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Conclusions and Outlook

We developed a lidar-only navigation and mapping solution for operation in challenging

environments which makes use of inexpensive deployable landmarks. This method is especially

designed for use in robotic space exploration since its not affected by factors like lighting, lack of

environment features and reconnaissance prerequisite for navigation - which plague the existing

rovers on Mars (Section 1.1). Our SLAM system only requires range data from the laser scanner

and produces consistent results without odometry inputs or data from an Inertial Measurement Unit

(IMU).

6.1 Key Contributions

1. We implemented a LiDAR-only SLAM system on a rover and tested it on real data.

2. We decoupled the SLAM system into an independent scan matching front-end and a graph

optimisation back-end. The front-end was shown to deliver good results by itself in scenarios

with a favourable and structured environment. The back-end provided a marked improvement

when the front-end struggled. This was mostly during tasks like loops that required good

data association.

3. We proposed an artificial landmark based extension to our SLAM system, where the land-

marks can be placed randomly and autonomously along the robot’s path. The landmark

detection system exploits existing sensor capabilities of measuring reflectivities, and requires

no additional hardware. This landmark extension proved to be especially helpful in fea-

tureless environments where the SLAM system (front-end and back-end) accumulated drift

errors.

6.2 Limitations

We acknowledge some of the limitations of our work in this section. These could stem from a

variety of reasons including time shortage, methodology, equipment or infrastructure scarcity.

55
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• Qualitative evaluation: Our result evaluation could have been more objective. Given the lack

of ground truth data as a consequence of a lack of a global localization system, we relied on

comparing our results to the ones obtained without filtering the sensor data. Moreover, we

couldn’t use a metric (like errors for active vertices) to compare results due to time deficiency.

This led us to compare our trajectories by merely looking at it. While we did clearly get a

sense of differences between two trajectories, we didn’t know how much was that difference

exactly.

• Planetary terrain approximation: In addition to sparse vegetation, our test area was surrounded

by structural features (Figure 5.2c) which forced us to use measures like filtering out a major

portion of the scan in order to simulate a featureless environment. This caused a huge loss of

detail which could have been used for better transformation estimates between poses.

• Landmark SLAM results: While the results from landmark SLAM were clearly superior

to its counterparts which didn’t use landmarks, the landmark trajectories were not entirely

accurate when compared with trajectories with long laser range scans. This could have been

improved upon using more methods to manipulate the detected landmarks.

6.3 Future Work

The combination of scan matching with graph optimisation is a powerful approach for lidar

navigation and mapping. Using reflective landmark modifiers has proven to be a cost-effective, low

overhead method to navigate in featureless terrain. This section discusses some of the ways this

work could be extended in the future.

The algorithm can be tested in a more representative terrain which lacks structured features

in the vicinity. A cave or a desert would be an appropriate choice. It would be interesting to see the

results when there is a large volume of point cloud data free of structured features to work with.

We estimate that the ICP transformations would be more accurate when a larger amount of points

are aligned. Additionally, a more quantitative evaluation of the results would reveal some insights

about the algorithm’s performance, and its variation with changing configuration parameters.

There is a large amount of literature which tackles the landmark placement problem. Since

we have randomly planned our landmarks, it would be fruitful to investigate the effects of planned

deployments. A policy to maximize the uniqueness of the environment by placing landmarks in

the most optimal configuration along the robot’s trajectory could by learned. We think that not

only would this be a more efficient use of landmarks, but it would also lead to better data association.

A very interesting extension of this thesis could be adapting it for long range navigation in a

featureless terrain under minimal to no lighting conditions. This might provide fascinating insights

about large scale graph error minimization and global consistency.
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